Performs an MCMC routine for a two parameter IRT Model using Choice Data
TwoPLChoicemcmc(
unique_subject_ids,
subject_ids,
choices_nk,
fixed_effects,
B,
rv_effects_design,
gamma,
beta,
zeta_rv,
Sigma_zeta_inv,
Y,
theta0,
a0,
b0,
mu_xi0,
Sig_xi0
)
A vector
with length \(N \times 1\)
containing unique subject IDs.
A vector
with length \(NK \times 1\)
containing subject IDs.
A vector
with length \(NK \times 1\)
containing subject choices.
A matrix
with dimensions
\(NK \times P_1\) containing
fixed effect design matrix without theta.
A \(V\) dimensional column vector
relating \(\theta_i\) and
\(\zeta_i\).
A matrix
with dimensions
\(NK \times V\) containing
random effect variables.
A vector
with dimensions \(P \times 1\)
containing fixed parameter estimates,
where \(P = P_1 + P_2\)
A vector
with dimensions \(P_2\)
containing random parameter estimates.
A matrix
with dimensions \(N \times V\)
containing random parameter estimates.
A matrix
with dimensions
\(P_2 \times P_2\).
A matrix
of dimensions \(N \times J\)
for Dichotomous item responses
A vector
of length \(N \times 1\)
for latent theta.
A vector
of length \(J\)
for item discriminations.
A vector
of length \(J\)
for item locations.
A vector
of dimension 2 (i.e. c(0,1)) that is a
prior for item parameter means.
A matrix
of dimension 2x2 (i.e. diag(2)) that
is a prior for item parameter vc matrix.
A list
that contains:
ai1
A vector
of length J
bi1
A vector
of length J
theta1
A vector
of length N
Z_c
A matrix
of length NK
Wzeta_0
A matrix
of length NK
cIRT()
, rmvnorm()
, and riwishart()
if (FALSE) {
# Call with the following data:
TwoPLChoicemcmc(cogDAT, theta0, a0, b0, mu_xi0, Sig_xi0)
}