Estimate the Deterministic Input, Noisy And Gate (DINA) cognitive diagnostic model parameters using the Gibbs sampler described by Culpepper (2015) <doi: 10.3102/1076998615595403>.
You can install dina
from CRAN using:
install.packages("dina")
Or, you can be on the cutting-edge development version on GitHub using:
if(!requireNamespace("devtools")) install.packages("devtools") devtools::install_github("tmsalab/dina")
To use the dina
package, load it into R using:
library("dina")
From there, the DINA CDM can be estimated using:
dina_model = dina(,, chain_length = 10000)
To simulate item data under DINA, use:
# Set a seed for reproducibility set.seed(888) # Setup Parameters N = 15 # Number of Examinees / Subjects J = 10 # Number of Items K = 2 # Number of Skills / Attributes # Assign slipping and guessing values for each item ss = gs = rep(.2, J) # Simulate identifiable Q matrix Q = sim_q_matrix(J, K) # Simulate subject attributes subject_alphas = sim_subject_attributes(N, K) # Simulate Item Data items_dina = sim_dina_items(subject_alphas, Q, ss, gs)
dina
packageTo ensure future development of the package, please cite dina
package if used during an analysis or simulation studies. Citation information for the package may be acquired by using in R:
citation("dina")