Automatically select an appropriate \(K\) dimension for a \(Q\) matrix under the Exploratory Deterministic Input, Noise And gate (EDINA) Model.

auto_edina(data, k = 2:4, burnin = 10000, chain_length = 20000)

Arguments

data

Binary responses to assessments in matrix form with dimensions \(N \times J\).

k

Number of Attribute Levels as a positive integer.

burnin

Number of Observations to discard on the chain.

chain_length

Length of the MCMC chain

Value

An auto_edina object that contains:

  • edina_models: A list containing all estimated edina model objects.

  • criterions: Information criterions calculated for each model

  • k_checked: Varying k dimensions checked.

  • j: Number of Items

See also

Examples

if(requireNamespace("simcdm", quietly = TRUE)) { # Set a seed for reproducibility set.seed(1512) # Setup data simulation parameters N = 15 # Number of Examinees / Subjects J = 10 # Number of Items K = 2 # Number of Skills / Attributes # Note: # Sample size and attributes have been reduced to create a minimally # viable example that can be run during CRAN's automatic check. # Please make sure to have a larger sample size... # Assign slipping and guessing values for each item ss = gs = rep(.2, J) # Simulate an identifiable Q matrix Q = simcdm::sim_q_matrix(J, K) # Simulate subject attributes subject_alphas = simcdm::sim_subject_attributes(N, K) # Simulate items under the DINA model items_dina = simcdm::sim_dina_items(subject_alphas, Q, ss, gs) # \donttest{ # Requires at least 15 seconds of execution time. # Three EDINA models will be fit with increasing number of attributes. model_set_edina = auto_edina(items_dina, k = 2:4) # Display results model_set_edina # Retrieve criterion table table = summary(model_set_edina) # Extract "best model" best_model(model_set_edina) # } }
#> Starting the estimation procedure ...
#> Working on k = 2 ...
#> Time Elapsed: 3.029
#> Working on k = 3 ...
#> Time Elapsed: 4.055
#> Working on k = 4 ...
#> Time Elapsed: 5.579
#> The EDINA model for data with K = 2 #> #> The model fit is as follows: #> k bic dic heuristic #> 2 318.8249 175.2029 0.02222222 #> #> The estimated coefficients for the EDINA model are: #> Guessing SD(Guessing) Slipping SD(Slipping) #> Item1 0.3959 0.1772 0.2386 0.1447 #> Item2 0.2637 0.1467 0.4050 0.1821 #> Item3 0.1220 0.1070 0.3213 0.1670 #> Item4 0.1414 0.1186 0.1433 0.1234 #> Item5 0.3301 0.1516 0.2359 0.1393 #> Item6 0.2192 0.1304 0.3106 0.1648 #> Item7 0.2278 0.1109 0.4920 0.2021 #> Item8 0.2920 0.1590 0.3375 0.1729 #> Item9 0.4198 0.1449 0.3401 0.1458 #> Item10 0.2272 0.1398 0.2441 0.1438 #> #> The estimated Q matrix is: #> Trait1 Trait2 #> Item01 0.6418 0.5205 #> Item02 0.6194 0.5121 #> Item03 0.5409 0.6620 #> Item04 0.4881 0.6256 #> Item05 0.5454 0.6601 #> Item06 0.5941 0.6817 #> Item07 0.7514 0.7612 #> Item08 0.6271 0.5074 #> Item09 0.6640 0.6284 #> Item10 0.5025 0.6315