Creates a general bijection vector.

attribute_gen_bijection(K, M)

Arguments

K

Number of Attributes

M

Number of Responses

Value

A vec with length \(K\) detailing the power's of \(M\).

Details

The bijection vector generated is \(\mathbf v = (M^{K-1},M^{K-2}, \dots, 1)^\top\).

See also

Author

Steven Andrew Culpepper and James Joseph Balamuta

Examples

## Construct an attribute bijection for M responses ---- biject_ternary = attribute_gen_bijection(5, 3) biject_ternary
#> [,1] #> [1,] 81 #> [2,] 27 #> [3,] 9 #> [4,] 3 #> [5,] 1
## Construct an attribute bijection for binary responses ---- biject_binary = attribute_gen_bijection(5, 2) biject_binary
#> [,1] #> [1,] 16 #> [2,] 8 #> [3,] 4 #> [4,] 2 #> [5,] 1
## Construct an attribute bijection for binary responses ---- biject_default = attribute_bijection(5) biject_default
#> [,1] #> [1,] 16 #> [2,] 8 #> [3,] 4 #> [4,] 2 #> [5,] 1