A multilevel dataset from Hofmann, Griffin, and Gavin (2000).

Hofmann

Format

A data frame with 1,000 observations and 7 variables.

id

a numeric vector of group ids.

helping

a numeric vector of the helping outcome variable construct.

mood

a level 1 mood predictor.

mood_grp_mn

a level 2 variable of the group mean of mood.

cohesion

a level 2 covariate measuring cohesion.

mood_grp_cent

group-mean centered mood predictor.

mood_grd_cent

grand-mean centered mood predictor.

Source

Hofmann, D.A., Griffin, M.A., & Gavin, M.B. (2000). The application of hierarchical linear modeling to management research. In K.J. Klein, & S.W.J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations: Foundations, extensions, and new directions (pp. 467-511). Hoboken, NJ: Jossey-Bass.

References

Aguinis, H., & Culpepper, S.A. (2015). An expanded decision making procedure for examining cross-level interaction effects with multilevel modeling. Organizational Research Methods. Available at: http://hermanaguinis.com/pubs.html

See also

Examples

if (FALSE) { if(requireNamespace("lme4") && requireNamespace("RLRsim")){ data(Hofmann) library("lme4") # Random-Intercepts Model lmmHofmann0 = lmer(helping ~ (1|id), data = Hofmann) vy_Hofmann = var(Hofmann[,'helping']) # Computing icca VarCorr(lmmHofmann0)$id[1,1]/vy_Hofmann # Estimating Group-Mean Centered Random Slopes Model, no level 2 variables lmmHofmann1 <- lmer(helping ~ mood_grp_cent + (mood_grp_cent |id), data = Hofmann, REML = FALSE) X_Hofmann = model.matrix(lmmHofmann1) P = ncol(X_Hofmann) T1_Hofmann = VarCorr(lmmHofmann1)$id[1:P,1:P] # Computing iccb icc_beta(X_Hofmann, Hofmann[,'id'], T1_Hofmann, vy_Hofmann)$rho_beta # Performing LR test # Need to install 'RLRsim' package library("RLRsim") lmmHofmann1a <- lmer(helping ~ mood_grp_cent + (1 | id), data = Hofmann, REML = FALSE) obs.LRT <- 2*(logLik(lmmHofmann1) - logLik(lmmHofmann1a))[1] X <- getME(lmmHofmann1,"X") Z <- t(as.matrix(getME(lmmHofmann1,"Zt"))) sim.LRT <- LRTSim(X, Z, 0, diag(ncol(Z))) (pval <- mean(sim.LRT > obs.LRT)) } else { stop("Please install packages `RLRsim` and `lme4` to run the above example.") } }