A simulated data example from Aguinis and Culpepper (2015) to demonstrate
the icc_beta
function for computing the proportion of variance
in the outcome variable that is attributed to heterogeneity in slopes due to
higher-order processes/units.
simICCdata
A data frame with 900 observations (i.e., 30 observations nested within 30 groups) on the following 6 variables.
l1id
A within group ID variable.
l2id
A group ID variable.
one
A column of 1's for the intercept.
X1
A simulated level 1 predictor.
X2
A simulated level 1 predictor.
Y
A simulated outcome variable.
Aguinis, H., & Culpepper, S.A. (2015). An expanded decision making procedure for examining cross-level interaction effects with multilevel modeling. Organizational Research Methods. Available at: http://www.hermanaguinis.com/pubs.html
See Aguinis and Culpepper (2015) for the model used to simulate the dataset.
if (FALSE) { data(simICCdata) if(requireNamespace("lme4")){ library("lme4") # computing icca vy <- var(simICCdata$Y) lmm0 <- lmer(Y ~ (1|l2id), data = simICCdata, REML = FALSE) VarCorr(lmm0)$l2id[1,1]/vy # Create simICCdata2 grp_means = aggregate(simICCdata[c('X1','X2')], simICCdata['l2id'],mean) colnames(grp_means)[2:3] = c('m_X1','m_X2') simICCdata2 = merge(simICCdata, grp_means, by='l2id') # Estimating random slopes model lmm1 <- lmer(Y ~ I(X1-m_X1) + I(X2-m_X2) + (I(X1-m_X1) + I(X2-m_X2) | l2id), data = simICCdata2, REML = FALSE) X <- model.matrix(lmm1) p <- ncol(X) T1 <- VarCorr(lmm1) $l2id[1:p,1:p] # computing iccb # Notice '+1' because icc_beta assumes l2ids are from 1 to 30. icc_beta(X, simICCdata2$l2id+1, T1, vy)$rho_beta } else { stop("Please install `lme4` to run the above example.") } }