Load the spatial rotation data

N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]

(1) Simulate responses based on the HMDCM model

class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
 Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N)
lambdas_true = c(-1, 1.8, .277, .055)
Alphas <- sim_alphas(model="HO_sep", 
                    lambdas=lambdas_true, 
                    thetas=thetas_true, 
                    Q_matrix=Q_matrix, 
                    Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#> 
#>   0   1   2   3   4 
#>  32  39  88 151  40
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)

Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
                   itempars=itempars_true)

(2) Run the MCMC to sample parameters from the posterior distribution

output_HMDCM = hmcdm(Y_sim,Q_matrix,"DINA_HO",Test_order = Test_order, Test_versions = Test_versions,
                     chain_length=100,burn_in=30,
                     theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0

output_HMDCM = hmcdm(Y_sim,Q_matrix,"DINA_HO",Design_array,
                     chain_length=100,burn_in=30,
                     theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0

output_HMDCM
#> 
#> Model: DINA_HO 
#> 
#> Sample Size: 350
#> Number of Items: 
#> Number of Time Points: 
#> 
#> Chain Length: 100, burn-in: 30

summary(output_HMDCM)
#> 
#> Model: DINA_HO 
#> 
#> Item Parameters:
#>  ss_EAP  gs_EAP
#>  0.1234 0.19289
#>  0.1864 0.09914
#>  0.1428 0.24560
#>  0.1512 0.13499
#>  0.2329 0.19823
#>    ... 45 more items
#> 
#> Transition Parameters:
#>    lambdas_EAP
#> λ0     -1.4201
#> λ1      2.1535
#> λ2      0.1346
#> λ3      0.1501
#> 
#> Class Probabilities:
#>      pis_EAP
#> 0000  0.1526
#> 0001  0.1795
#> 0010  0.1920
#> 0011  0.2274
#> 0100  0.1762
#>    ... 11 more classes
#> 
#> Deviance Information Criterion (DIC): 18651.27 
#> 
#> Posterior Predictive P-value (PPP):
#> M1: 0.5163
#> M2:  0.49
#> total scores:  0.6295
a <- summary(output_HMDCM)
a$ss_EAP
#>             [,1]
#>  [1,] 0.12341783
#>  [2,] 0.18636161
#>  [3,] 0.14282550
#>  [4,] 0.15120290
#>  [5,] 0.23290916
#>  [6,] 0.14901122
#>  [7,] 0.09252037
#>  [8,] 0.10000980
#>  [9,] 0.18455431
#> [10,] 0.20792040
#> [11,] 0.16926256
#> [12,] 0.15567475
#> [13,] 0.18662661
#> [14,] 0.12346733
#> [15,] 0.23549168
#> [16,] 0.12005216
#> [17,] 0.19516850
#> [18,] 0.15812703
#> [19,] 0.14260032
#> [20,] 0.24469955
#> [21,] 0.19544943
#> [22,] 0.18200210
#> [23,] 0.16771569
#> [24,] 0.15003991
#> [25,] 0.20448300
#> [26,] 0.16481782
#> [27,] 0.18817459
#> [28,] 0.15207987
#> [29,] 0.14249356
#> [30,] 0.14076185
#> [31,] 0.13306090
#> [32,] 0.19902324
#> [33,] 0.11809454
#> [34,] 0.19388356
#> [35,] 0.14974393
#> [36,] 0.18286789
#> [37,] 0.14044840
#> [38,] 0.20979261
#> [39,] 0.17966528
#> [40,] 0.16886578
#> [41,] 0.21236107
#> [42,] 0.15585713
#> [43,] 0.09765916
#> [44,] 0.15477498
#> [45,] 0.15006668
#> [46,] 0.08106721
#> [47,] 0.13747222
#> [48,] 0.09052151
#> [49,] 0.19449586
#> [50,] 0.12733611
a$lambdas_EAP
#>          [,1]
#> λ0 -1.4201008
#> λ1  2.1535364
#> λ2  0.1346372
#> λ3  0.1500694
mean(a$PPP_total_scores)
#> [1] 0.6303429
mean(upper.tri(a$PPP_item_ORs))
#> [1] 0.49
mean(a$PPP_item_means)
#> [1] 0.53

(3) Evaluate the accuracy of estimated parameters

Attribute-wise agreement rate between true and estimated alphas

AAR_vec <- numeric(L)
for(t in 1:L){
  AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9321429 0.9392857 0.9592857 0.9692857 0.9700000

Pattern-wise agreement rate between true and estimated alphas

PAR_vec <- numeric(L)
for(t in 1:L){
  PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.7457143 0.7857143 0.8457143 0.8942857 0.8885714

(4) Evaluate the fit of the model to the observed response

a$DIC
#>              Transition Response_Time Response    Joint    Total
#> D_bar          2061.668            NA 14561.85 1246.987 17870.51
#> D(theta_bar)   1775.030            NA 14097.67 1217.050 17089.75
#> DIC            2348.307            NA 15026.04 1276.924 18651.27

head(a$PPP_total_scores)
#>           [,1]       [,2]      [,3]      [,4]      [,5]
#> [1,] 0.9571429 0.54285714 0.9428571 0.9142857 0.3285714
#> [2,] 1.0000000 0.04285714 0.6714286 0.5428571 0.5142857
#> [3,] 0.4428571 0.72857143 0.2571429 0.7857143 0.5142857
#> [4,] 0.2000000 0.34285714 0.5857143 1.0000000 0.4142857
#> [5,] 0.6857143 0.74285714 0.6714286 0.3142857 1.0000000
#> [6,] 0.6142857 0.12857143 0.5571429 0.4285714 1.0000000
head(a$PPP_item_means)
#> [1] 0.5142857 0.4571429 0.5428571 0.4571429 0.6428571 0.4142857
head(a$PPP_item_ORs)
#>      [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]      [,8]
#> [1,]   NA 0.9714286 0.7428571 0.7857143 0.7285714 0.6142857 0.4142857 0.3571429
#> [2,]   NA        NA 0.7142857 0.9000000 0.6571429 0.5857143 0.5000000 0.8857143
#> [3,]   NA        NA        NA 0.7142857 0.9142857 0.7571429 0.9142857 0.3857143
#> [4,]   NA        NA        NA        NA 0.6285714 0.6428571 0.9857143 0.8142857
#> [5,]   NA        NA        NA        NA        NA 0.9428571 0.5428571 0.2571429
#> [6,]   NA        NA        NA        NA        NA        NA 0.7142857 0.3857143
#>           [,9]     [,10]     [,11]      [,12]     [,13]     [,14]      [,15]
#> [1,] 0.4857143 0.4000000 0.0000000 0.54285714 0.6857143 0.5428571 0.94285714
#> [2,] 1.0000000 0.4857143 0.6714286 0.21428571 0.1285714 0.5857143 0.15714286
#> [3,] 0.4000000 0.9428571 0.3285714 0.47142857 0.5428571 0.8142857 0.85714286
#> [4,] 0.7714286 0.7142857 0.5285714 0.75714286 0.5142857 1.0000000 0.80000000
#> [5,] 0.8142857 0.7857143 0.3571429 0.02857143 0.7285714 0.3857143 0.31428571
#> [6,] 0.9285714 0.5714286 0.4285714 0.02857143 0.7000000 0.1714286 0.08571429
#>          [,16]     [,17]      [,18]     [,19]     [,20]     [,21]     [,22]
#> [1,] 0.7142857 0.3857143 0.05714286 0.1000000 0.0000000 0.3571429 0.4857143
#> [2,] 0.8714286 0.5714286 0.18571429 0.2857143 0.7142857 0.6428571 0.7285714
#> [3,] 0.9428571 0.6571429 0.62857143 0.5857143 0.3428571 0.5571429 0.3428571
#> [4,] 0.8714286 0.1142857 0.05714286 0.7428571 1.0000000 0.3857143 0.5142857
#> [5,] 0.5714286 0.2857143 0.00000000 0.4857143 0.2714286 0.8000000 0.2857143
#> [6,] 0.2857143 0.1142857 0.15714286 0.7000000 0.2571429 0.2000000 0.3285714
#>           [,23]     [,24]      [,25]      [,26]      [,27]      [,28]
#> [1,] 0.04285714 0.1000000 0.01428571 0.12857143 0.07142857 0.04285714
#> [2,] 0.14285714 0.9000000 0.67142857 0.22857143 0.18571429 0.17142857
#> [3,] 0.62857143 0.7857143 0.87142857 0.30000000 0.67142857 0.35714286
#> [4,] 0.92857143 0.3142857 0.35714286 0.92857143 0.52857143 0.41428571
#> [5,] 0.14285714 0.7000000 0.38571429 0.75714286 0.94285714 0.42857143
#> [6,] 0.12857143 0.3142857 0.50000000 0.01428571 0.55714286 0.58571429
#>           [,29]      [,30]     [,31]     [,32]      [,33]      [,34]     [,35]
#> [1,] 0.08571429 0.05714286 0.1857143 0.7857143 0.04285714 0.78571429 0.6285714
#> [2,] 0.32857143 0.18571429 0.4285714 0.4714286 0.42857143 0.04285714 0.5285714
#> [3,] 0.82857143 0.38571429 0.6571429 0.7142857 0.38571429 0.41428571 0.8428571
#> [4,] 0.70000000 0.47142857 0.4571429 0.6285714 0.10000000 0.38571429 0.8142857
#> [5,] 0.45714286 0.24285714 0.1428571 1.0000000 0.68571429 0.52857143 0.8000000
#> [6,] 0.28571429 0.47142857 0.3571429 0.6285714 0.21428571 0.08571429 0.1000000
#>          [,36]      [,37]     [,38]      [,39]      [,40]      [,41]     [,42]
#> [1,] 0.7857143 0.21428571 0.8714286 0.17142857 0.00000000 0.08571429 0.1428571
#> [2,] 0.6857143 0.04285714 0.3571429 0.08571429 0.20000000 0.75714286 0.3285714
#> [3,] 0.9142857 0.18571429 0.7857143 0.50000000 0.77142857 0.51428571 0.7428571
#> [4,] 0.8428571 0.94285714 0.9428571 0.27142857 0.18571429 0.92857143 0.6285714
#> [5,] 0.5285714 0.75714286 0.4428571 0.32857143 0.82857143 0.38571429 0.6571429
#> [6,] 0.8857143 0.38571429 0.5142857 0.15714286 0.02857143 0.05714286 0.6571429
#>          [,43]     [,44]      [,45]     [,46]      [,47]     [,48]     [,49]
#> [1,] 0.4285714 0.7000000 0.18571429 0.7142857 0.52857143 0.6000000 0.5000000
#> [2,] 0.4285714 0.2857143 0.05714286 0.2714286 0.12857143 0.7142857 0.6000000
#> [3,] 0.8000000 0.7000000 0.32857143 0.5142857 0.17142857 0.5000000 0.2571429
#> [4,] 0.8428571 0.8857143 0.70000000 0.5000000 0.10000000 0.8142857 0.9857143
#> [5,] 0.4142857 0.8142857 0.61428571 0.7285714 0.48571429 0.3571429 0.7285714
#> [6,] 0.5714286 0.4714286 0.20000000 0.1714286 0.01428571 0.3571429 0.3714286
#>          [,50]
#> [1,] 0.4428571
#> [2,] 0.2428571
#> [3,] 0.3714286
#> [4,] 0.7142857
#> [5,] 0.2285714
#> [6,] 0.2142857
library(bayesplot)
#> This is bayesplot version 1.10.0
#> - Online documentation and vignettes at mc-stan.org/bayesplot
#> - bayesplot theme set to bayesplot::theme_default()
#>    * Does _not_ affect other ggplot2 plots
#>    * See ?bayesplot_theme_set for details on theme setting
pp_check(output_HMDCM)

pp_check(output_HMDCM, plotfun="dens_overlay", type="item_mean")

pp_check(output_HMDCM, plotfun="hist", type="item_OR")
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

pp_check(output_HMDCM, plotfun="stat_2d", type="item_mean")

pp_check(output_HMDCM, plotfun="scatter_avg", type="total_score")

pp_check(output_HMDCM, plotfun="error_scatter_avg", type="total_score")

Convergence checking

Checking convergence of the two independent MCMC chains with different initial values using coda package.

# output_HMDCM1 = hmcdm(Y_sim, Q_matrix, "DINA_HO", Design_array,
#                      chain_length=100, burn_in=30,
#                      theta_propose = 2, deltas_propose = c(.45,.35,.25,.06))
# output_HMDCM2 = hmcdm(Y_sim, Q_matrix, "DINA_HO", Design_array,
#                      chain_length=100, burn_in=30,
#                      theta_propose = 2, deltas_propose = c(.45,.35,.25,.06))
# 
# library(coda)
# 
# x <- mcmc.list(mcmc(t(rbind(output_HMDCM1$ss, output_HMDCM1$gs, output_HMDCM1$lambdas))),
#                mcmc(t(rbind(output_HMDCM2$ss, output_HMDCM2$gs, output_HMDCM2$lambdas))))
# 
# gelman.diag(x, autoburnin=F)