All functions

Design_array

Design array

ETAmat()

Generate ideal response matrix

L_real_array

Observed response times array

OddsRatio()

Compute item pairwise odds ratio

Q_list_g()

Generate a list of Q-matrices for each examinee.

Q_matrix

Q-matrix

TPmat()

Generate monotonicity matrix

Test_versions

Subjects' test version

Y_real_array

Observed response accuracy array

hmcdm-package _PACKAGE

hmcdm: Hidden Markov Cognitive Diagnosis Models for Learning

hmcdm()

Gibbs sampler for learning models

inv_bijectionvector()

Convert integer to attribute pattern

pp_check(<hmcdm>)

Graphical posterior predictive checks for hidden Markov cognitive diagnosis model

rOmega()

Generate a random transition matrix for the first order hidden Markov model

random_Q()

Generate random Q matrix

sim_RT()

Simulate item response times based on Wang et al.'s (2018) joint model of response times and accuracy in learning

sim_alphas()

Generate attribute trajectories under the specified hidden Markov models

sim_hmcdm()

Simulate responses from the specified model (entire cube)

print(<summary.hmcdm>) summary(<hmcdm>)

Summarizing Hidden Markov Cognitive Diagnosis Model Fits

Test_order

Test block ordering of each test version