Load the spatial rotation data

N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]

(1) Simulate responses and response times based on the rRUM model

tau <- numeric(K)
for(k in 1:K){
  tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
# Initial alphas
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
  for(k in 1:K){
    prereqs <- which(R[k,]==1)
    if(length(prereqs)==0){
      Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
    }
    if(length(prereqs)>0){
      Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
    }
  }
}
Alphas <- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#> 
#>   0   1   2   3   4 
#>  32 109 116  79  14
Smats <- matrix(runif(J*K,.1,.3),c(J,K))
Gmats <- matrix(runif(J*K,.1,.3),c(J,K))
# Simulate rRUM parameters
r_stars <- Gmats / (1-Smats)
pi_stars <- apply((1-Smats)^Q_matrix, 1, prod)

Y_sim <- sim_hmcdm(model="rRUM",Alphas,Q_matrix,Design_array,
                   r_stars=r_stars,pi_stars=pi_stars)

(2) Run the MCMC to sample parameters from the posterior distribution

output_rRUM_indept = hmcdm(Y_sim,Q_matrix,"rRUM_indept",Design_array,
                           100,30,R = R)
#> 0
output_rRUM_indept
#> 
#> Model: rRUM_indept 
#> 
#> Sample Size: 350
#> Number of Items: 
#> Number of Time Points: 
#> 
#> Chain Length: 100, burn-in: 50
summary(output_rRUM_indept)
#> 
#> Model: rRUM_indept 
#> 
#> Item Parameters:
#>  r_stars1_EAP r_stars2_EAP r_stars3_EAP r_stars4_EAP pi_stars_EAP
#>        0.1885       0.6379       0.6926       0.5159       0.7307
#>        0.6714       0.3421       0.6172       0.5216       0.8714
#>        0.5984       0.5195       0.5161       0.3664       0.7284
#>        0.6309       0.6800       0.1704       0.6354       0.7295
#>        0.4450       0.3415       0.5388       0.6559       0.5081
#>    ... 45 more items
#> 
#> Transition Parameters:
#>    taus_EAP
#> τ1   0.5000
#> τ2   0.2471
#> τ3   0.4094
#> τ4   0.3552
#> 
#> Class Probabilities:
#>      pis_EAP
#> 0000 0.03431
#> 0001 0.05942
#> 0010 0.08289
#> 0011 0.04864
#> 0100 0.13797
#>    ... 11 more classes
#> 
#> Deviance Information Criterion (DIC): 22371.21 
#> 
#> Posterior Predictive P-value (PPP):
#> M1: 0.516
#> M2:  0.49
#> total scores:  0.6098
a <- summary(output_rRUM_indept)
head(a$r_stars_EAP)
#>           [,1]      [,2]      [,3]      [,4]
#> [1,] 0.1885316 0.6379182 0.6925637 0.5159390
#> [2,] 0.6714242 0.3421459 0.6172373 0.5215577
#> [3,] 0.5983920 0.5195033 0.5160622 0.3664128
#> [4,] 0.6309239 0.6800379 0.1703724 0.6354255
#> [5,] 0.4449957 0.3414551 0.5387607 0.6559391
#> [6,] 0.6125392 0.3225775 0.2526698 0.6368034

(3) Check for parameter estimation accuracy

(cor_pistars <- cor(as.vector(pi_stars),as.vector(a$pi_stars_EAP)))
#> [1] 0.9621922
(cor_rstars <- cor(as.vector(r_stars*Q_matrix),as.vector(a$r_stars_EAP*Q_matrix)))
#> [1] 0.950812

AAR_vec <- numeric(L)
for(t in 1:L){
  AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.8621429 0.8985714 0.9285714 0.9514286 0.9657143

PAR_vec <- numeric(L)
for(t in 1:L){
  PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.5428571 0.6685714 0.7514286 0.8200000 0.8714286

(4) Evaluate the fit of the model to the observed response

a$DIC
#>              Transition Response_Time Response    Joint    Total
#> D_bar          2183.959            NA 17550.77 1879.046 21613.77
#> D(theta_bar)   2100.143            NA 16872.74 1883.459 20856.34
#> DIC            2267.776            NA 18228.80 1874.634 22371.21
head(a$PPP_total_scores)
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.16 0.74 1.00 1.00 0.94
#> [2,] 0.66 0.40 0.90 0.76 0.56
#> [3,] 0.56 0.42 0.56 0.30 0.50
#> [4,] 0.70 0.78 0.62 0.26 0.86
#> [5,] 0.54 0.60 0.10 0.30 0.78
#> [6,] 0.70 0.96 0.16 0.42 0.64
head(a$PPP_item_means)
#> [1] 0.52 0.56 0.52 0.48 0.54 0.44
head(a$PPP_item_ORs)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,]   NA  0.7 0.44 0.72 0.74 0.94 0.46 0.78 0.38  0.78  0.20  0.92  0.90  0.78
#> [2,]   NA   NA 0.90 0.04 0.24 0.62 0.86 0.94 0.44  0.62  0.72  0.80  0.78  0.76
#> [3,]   NA   NA   NA 0.56 0.18 0.28 0.20 0.94 0.64  0.56  0.18  0.20  0.20  0.30
#> [4,]   NA   NA   NA   NA 0.92 0.58 0.84 0.72 0.46  0.62  0.24  0.90  0.66  0.82
#> [5,]   NA   NA   NA   NA   NA 0.54 0.90 0.18 0.84  0.86  0.68  0.76  0.70  0.04
#> [6,]   NA   NA   NA   NA   NA   NA 0.76 0.80 0.88  0.42  0.86  0.58  0.32  0.98
#>      [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,]  0.30  0.30  0.52  0.92  0.66  0.90  0.66  0.58  0.70  0.20  0.26  0.22
#> [2,]  0.56  0.98  0.50  0.78  0.28  0.22  0.54  0.34  0.62  0.88  0.60  0.04
#> [3,]  0.46  0.88  0.34  0.70  0.14  0.72  0.54  0.10  0.20  0.56  0.26  0.20
#> [4,]  0.58  0.38  0.74  0.00  0.26  0.14  0.16  0.40  0.68  0.36  0.14  0.54
#> [5,]  0.92  0.68  0.76  0.78  0.62  0.88  0.56  0.70  0.38  0.96  0.44  0.08
#> [6,]  0.48  0.54  0.76  0.80  0.74  0.74  0.26  0.48  0.54  0.70  0.84  0.24
#>      [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,]  0.98  1.00  0.76  0.50  0.22  0.14  0.82  1.00  0.00  0.62  0.16  0.20
#> [2,]  0.00  0.18  0.70  0.76  0.68  0.26  0.88  0.72  0.04  0.30  0.10  0.74
#> [3,]  0.40  0.06  0.52  0.08  0.50  0.10  0.52  0.08  0.20  0.70  0.50  0.82
#> [4,]  0.26  0.24  0.52  0.56  0.74  0.02  0.96  0.58  0.70  0.14  0.10  0.72
#> [5,]  0.84  0.58  0.24  0.74  0.72  0.16  0.40  0.86  0.74  0.08  0.10  0.30
#> [6,]  0.36  0.88  0.02  0.72  0.34  0.44  0.74  0.94  0.56  0.42  0.46  0.22
#>      [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,]  0.64  0.94  0.38  0.52  0.86  0.58  0.04  0.62  0.60  0.26  0.48  0.16
#> [2,]  0.86  0.46  0.92  0.70  0.70  0.44  0.44  0.30  0.50  0.60  0.46  0.68
#> [3,]  0.32  0.80  0.86  0.74  0.64  0.04  0.64  0.34  0.38  0.94  0.44  0.68
#> [4,]  0.10  0.62  0.54  0.56  0.08  0.02  0.14  0.76  0.86  0.64  0.64  0.32
#> [5,]  0.76  0.92  0.40  0.86  0.66  0.42  0.20  0.58  0.34  0.68  0.82  0.34
#> [6,]  0.68  0.22  0.58  0.98  0.64  0.62  0.38  0.30  0.86  0.54  0.04  0.78